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Abstract. In this study, the magnetohydrodynamic (MHD) flow is simulated in a circular
pipe with slipping and arbitrarily conducting boundary. The 2D governing coupled equations
in terms of the velocity and the induced magnetic field are solved by the Dual Reciprocity
Boundary Element Method (DRBEM). The discretized system of equations is solved in one
stroke without introducing an iteration which reduces the computational cost. It is shown
that, the flow decelerates, Hartmann layers enlarge through the top and the bottom of the
pipe and induced current lines align as the wall conductivity or Hartmann number increases.
An increase in the slip length accelerates the flow, shrinks the stagnant region, diminishes the
boundary layers and retards the effect of the wall conductivity increase. The DRBEM is an
advantageous method in solving MHD flow especially with slipping and arbitrarily conducting
boundary conditions, since it enables to insert both the unknowns and their normal derivatives
in slip and conductivity wall conditions.

1. Introduction
Magnetohydrodynamics is the scientific branch investigating the flow of electrically conducting
fluids under magnetic field (MHD flow). It has many engineering and industrial applications as
electromagnetic pumps, MHD generators, nuclear reactors and microfluidics. The derivation of
the governing equations for the laminar MHD flow in channels are presented in [1]. Analytical
solutions for the MHD flow are available only for simple geometries and simple boundary
conditions. The need of approximate and experimental solutions have been arisen in the
case of high Hartmann number limit. Asymptotic solutions for the MHD pipe flow when
Hartmann number is high are presented in [2]. The improvement in the numerical methods
brings new approximate solutions for more complicated flow configurations. Among these with
finite difference method [3], finite volume method [4], finite element method [5] can be counted.
The DRBEM is an advantageous method in the solutions of MHD channel and pipe flow problems
due to its boundary only nature which results in discretized matrix-vector equations small in size.
The DRBEM transforms the partial differential equations into the boundary integral equations
using the fundamental solution of Laplace equation and approximating the inhomogeneity using
radial basis functions. There are quite a lot numerical studies in MHD using the DRBEM such
as [6, 7]. In all these numerical and analytical studies no-slip boundary condition is considered
for the velocity. However, in microfluidics and surface roughness slip may occur on the boundary
exhibiting also varying electrical conductivity.
In this study, we present a DRBEM solution for the MHD pipe flow with arbitrarily conducting,
slipping walls. The coupled MHD equations are discretized by taking constant boundary
elements and arbitrary number of interior nodes. It is found that, Hartmann and Robert layers
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are developed as Hartmann number increases in the no-slip case but the increase in the slip
weakens the Hartmann layers. The flow behaves as if the walls are perfectly conducting when
the wall conductance ratio increases.

2. The physical problem and the mathematical model
We consider laminar, fully developed flow of an electrically conducting, incompressible fluid in a
circular pipe with thin arbitrarily conducting and slipping walls. The fluid is pumped within the
pipe due to a constant pressure gradient ∂P/∂z in the pipe axis direction and the flow is under
the influence of a horizontally applied uniform magnetic field B0. Being a fully developed flow
the problem is modeled in the 2D cross-section of the pipe which is a unit disk. The governing
coupled MHD equations for the third components of the velocity and the magnetic induction
fields in nondimensional form [1, 5], and the boundary conditions are

∇2V +Ha
∂B

∂x
= −1

∇2B +Ha
∂V

∂x
= 0

in Ω

V + α
∂V

∂n
= 0

B + β
∂B

∂n
= 0

on ∂Ω = Γ (1)

where V (x, y) is the velocity and B(x, y) is the induced magnetic field. The non-dimensional
parameter Ha = B0L

√
σ/ρν is called the Hartmann number with L, σ, ρ, ν being the radius of

the circular pipe, electrical conductivity, density and kinematic viscosity of the fluid, respectively.
The slip at the wall is measured by the nondimensional slip length α which is the distance from
the fluid to the surface within the solid phase where the extrapolated flow velocity vanishes
[8]. β in the electromagnetic boundary condition is called the wall conductance ratio defined as
β = (σwtw)/(σL) where tw and σw are the thickness and the electrical conductivity of the wall,
respectively. Notice that for insulated walls (σw = 0, β = 0) the condition is reduced to B = 0
whereas for perfectly conducting walls (σw →∞, β →∞) the condition becomes ∂B/∂n = 0.

3. Application of the DRBEM
The coupled MHD equations in (1) are discretized by the DRBEM using at most 160 constant
boundary elements. All the terms other than the Laplacian are taken as inhomogeneity and
the differential equations are transformed to boundary integral equations by weighting them
with the fundamental solution of the Laplace equation (u∗ = (1/2π) ln(1/r)) [9] and applying
Green’s first identity two times. The inhomogeneities are approximated by the radial basis
functions fj(r) = 1 + rj which are connected to the particular solutions with ∇2ûj = fj , rj
being the distance between source and the field points [9]. The discretization of the boundary
with N constant elements and taking L arbitrary interior points, one achieves the matrix-vector
equations

HV −G
∂V

∂n
= −(HÛ−GQ̂)F−1{Ha∂B

∂x
+ 1} (2)

HB −G
∂B

∂n
= −(HÛ−GQ̂)F−1{Ha∂V

∂x
} (3)

in terms of the DRBEM matrices

Hij =

∫
Γj

q∗dΓj , Hii = ci, Gij =

∫
Γj

u∗dΓj , Gii =
l

2π
(ln(

2

l
) + 1) (4)

with l being the length of the element and q∗ = ∂u∗/∂n. The matrices Û, Q̂
are constructed by taking each vector ûj and q̂j as columns, respectively. The space
derivatives of the unknowns V and B are approximated by the coordinate matrix F as
∂V/∂x = (∂F/∂x)F−1V, ∂B/∂x = (∂F/∂x)F−1B where F is constructed with fj ’s column
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wise. The two matrix-vector equations are combined and after the insertion of boundary
conditions, a linear system Ax = b is obtained and solved as a whole. The obtained linear system
is small in size due to the boundary only nature of the DRBEM. This procedure provides the
nodal solutions for the velocity and the induced magnetic field at all the boundary and interior
nodes in one stroke and reduces the computational cost.

4. Numerical results
The numerical solutions are presented in terms of equivelocity and current isolines for various
Ha, α and β values. In the MHD pipe flow three regions occur: core region where the flow is
almost stagnant, Robert layers and the Hartmann layers [10]. Robert layers are located adjacent
to the wall where its normal is perpendicular to the external magnetic field (B0) and Hartmann
layers are in the vicinity of the pipe wall in which the normal vector is not perpendicular to
B0. The presence of these boundary layers are well observed in Figure 1 when the walls are
electrically insulated (β = 0). As Hartmann number increases, flow is flattened, core region
enlarges through the Hartmann walls and the extend of the Robert layers decreases leaving
their places to Hartmann layers. Two counter current loops are observed with centers close to
the walls and these centers shift through the walls developing boundary layers with an increase
in the external magnetic field strength. These behaviors are in very well agreement with the
ones in [3].
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Figure 1: Velocity and induced magnetic field profiles α = 0, β = 0.

An increase in the wall conductance ratio (Figure 2), decreases the flow speed and directs
the currents between the walls diminishing the boundary layers and enlarges the core region
vertically. As β reaches to 10, the flow and induced magnetic field behaviors become similar to
the case that the walls are electrically conducting comparing the results with the one in [4].walls are electrically conducting comparing the results wi

β = 0 β = 0.3 β = 10
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Figure 2: Velocity and induced magnetic field profiles Ha = 10, α = 0.
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Figure 3: Velocity and induced magnetic field profiles Ha = 10, β = 0.

When the pipe wall admits slip and the walls are insulated (β = 0, Figure 3) Hartmann
layers weaken and flow accelerates similar to the case of rectangular duct flow with insulated
walls [8]. In strong slip condition α = 0.4, the slip phenomenon becomes significant especially
in the vicinity of the Hartmann walls which squeezes the core region vertically.
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Figure 4: Velocity and induced magnetic field profiles Ha = 10, β = 0.3.

In Figure 4 the influence of both the slip and the wall conductance ratio are shown. It
is observed that, the vertical enlargement of the core region with an increase in the wall
conductance ratio is retarded even for small slip length. When α = 0.4 the slip at the wall
dominates the flow behavior.
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